If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2n^2+3n-3=0
a = 2; b = 3; c = -3;
Δ = b2-4ac
Δ = 32-4·2·(-3)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{33}}{2*2}=\frac{-3-\sqrt{33}}{4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{33}}{2*2}=\frac{-3+\sqrt{33}}{4} $
| 9x+16=x+40 | | 4*2y+1=2*y−13 | | 7x+4x=-2(x-2)+(5x+4) | | 10x+21=3x+42 | | -3(x-5)^2-3=0 | | (6x-74)=(3x+16) | | 4*(2y+1)=2*(y−13) | | -(x-7)=-8(6+x)+6x | | 2x+17=( | | 4(2y+1)=2(y−13) | | 6n^2+n-15=0 | | 20/14=a/7 | | (6x-74)+(3x+16)=180 | | (3x+23)=( | | 8x+21=77 | | -19=7(1+6n)+8(7=5n) | | v^2-10v-39=0 | | -8b-(b-3)=97 | | -19=7(1+6n)+(7=5n) | | x3-10=8 | | 3x+-4=x-8 | | x/5.43=12 | | 20x+17=157 | | 3j-6=4j+7 | | (3x+23)(2x+17)=110 | | 99=5y+14 | | 3J-7=4j+7 | | 18x+11=-101 | | 6x+18=3x+42 | | x3-10=8= | | 3x+23x2x+17=110 | | 3J7,-6=4j+7 |